Requirement of Notch activation during regeneration of the intestinal epithelia.

نویسندگان

  • Ryuichi Okamoto
  • Kiichiro Tsuchiya
  • Yasuhiro Nemoto
  • Junko Akiyama
  • Tetsuya Nakamura
  • Takanori Kanai
  • Mamoru Watanabe
چکیده

Notch signaling regulates cell differentiation and proliferation, contributing to the maintenance of diverse tissues including the intestinal epithelia. However, its role in tissue regeneration is less understood. Here, we show that Notch signaling is activated in a greater number of intestinal epithelial cells in the inflamed mucosa of colitis. Inhibition of Notch activation in vivo using a gamma-secretase inhibitor resulted in a severe exacerbation of the colitis attributable to the loss of the regenerative response within the epithelial layer. Activation of Notch supported epithelial regeneration by suppressing goblet cell differentiation, but it also promoted cell proliferation, as shown in in vivo and in vitro studies. By utilizing tetracycline-dependent gene expression and microarray analysis, we identified a novel group of genes that are regulated downstream of Notch1 within intestinal epithelial cells, including PLA2G2A, an antimicrobial peptide secreted by Paneth cells. Finally, we show that these functions of activated Notch1 are present in the mucosa of ulcerative colitis, mediating cell proliferation, goblet cell depletion, and ectopic expression of PLA2G2A, thereby contributing to the regeneration of the damaged epithelia. This study showed the critical involvement of Notch signaling during intestinal tissue regeneration, regulating differentiation, proliferation, and antimicrobial response of the epithelial cells. Thus Notch signaling is a key intracellular molecular pathway for the proper reconstruction of the intestinal epithelia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Notch pathway activation can replace the requirement for Wnt4 and Wnt9b in mesenchymal-to-epithelial transition of nephron stem cells.

The primary excretory organ in vertebrates is the kidney, which is responsible for blood filtration, solute homeostasis and pH balance. These functions are carried out by specialized epithelial cells organized into tubules called nephrons. Each of these cell types arise during embryonic development from a mesenchymal stem cell pool through a process of mesenchymal-to-epithelial transition (MET)...

متن کامل

Notch signaling regulates cardiomyocyte proliferation during zebrafish heart regeneration.

The human heart's failure to replace ischemia-damaged myocardium with regenerated muscle contributes significantly to the worldwide morbidity and mortality associated with coronary artery disease. Remarkably, certain vertebrate species, including the zebrafish, achieve complete regeneration of amputated or injured myocardium through the proliferation of spared cardiomyocytes. Nonetheless, the g...

متن کامل

Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review

Objective(s):To determine the molecular and cellular mechanisms of spinal cord regeneration in zebrafish. Materials and Methods: Medical databases of PubMed and Scopus were searched with following key words: Zebrafish; spinal cord injuries; regeneration; recovery of function. The map of mechanisms was performed using Xmind software. Results: Wnt/ß-catenin signaling, L1.1, L1.2, Major vault prot...

متن کامل

Notch Signaling Inhibits Axon Regeneration

Many neurons have limited capacity to regenerate their axons after injury. Neurons in the mammalian central nervous system do not regenerate, and even neurons in the peripheral nervous system often fail to regenerate to their former targets. This failure is likely due in part to pathways that actively restrict regeneration; however, only a few factors that limit regeneration are known. Here, us...

متن کامل

Notch Signaling is Enhanced During Endochondral Bone Regeneration Relative to Intramembranous Regeneration

INTRODUCTION: Bone regeneration occurs through a series of spatiotemporal events influenced by the mechanical environment, various local and systemic factors, and the embryological origin of the specific bone. Long bone fractures treated with flexible fixation heal primarily through endochondral ossification. Following an initial inflammatory phase, mesenchymal cells proliferate and undergo cho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 296 1  شماره 

صفحات  -

تاریخ انتشار 2009